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Abstract. Given the increasing use of climate projections and multi-model ensemble weighting for a diverse array of 

applications, this project assesses the sensitivities of climate model weighting, and their resulting ensemble means, to 10 
multiple components, such as the weighting schemes, climate variables, or spatial domains of interest. The analysis makes 

use of global climate models from the Coupled Model Intercomparison Project Phase 5 (CMIP5), and their statistically 

downscaled counterparts created with the Localized Canonical Analogs (LOCA) method. This work focuses on historical 

and projected future mean precipitation and daily high temperatures of the south-central United States. Results suggest that 

model weights and corresponding weighted projections are highly sensitive to the weighting method as well as to the 15 
selected variables and spatial domains. For instance, when estimating model weights based on Louisiana precipitation, the 

weighted projections show a wetter and cooler south-central domain in the future compared to other weighting schemes. 

Alternatively, for example, when estimating model weights based on New Mexico temperature, the weighted projections 

show a drier and warmer south-central domain in the future. However, when considering the entire south-central domain in 

estimating the model weights, the weighted future projections show a compromise in the precipitation and temperature 20 
estimates. If future impact assessments utilize weighting schemes, then our findings suggest that how the weighting scheme 

is derived and applied to the projections may depend on the needs of an impact assessment or adaptation plan. From the 

results of our analysis, we summarize our recommendations concerning multi-model ensemble weighting as follows: 

• Weighted ensemble means should be used not only for national and international assessments but also for regional 

impacts assessments and planning. 25 
• Multiple strategies for model weighting are employed when feasible, to assure that uncertainties from various 

sources (e.g., weighting strategy used, domain or variable of interest applied, etc.) are considered. 

• That weighting is derived for individual sub-regions (such as the NCA regions) in addition to what is derived for the 

continental United States. 

• That domain-specific weighting be derived using both common (e.g. precipitation) and stakeholder-specific (e.g. 30 
streamflow) variables to produce relevant analysis for impact assessments and planning. 
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1 Introduction 

The simulation output from climate models has been traditionally used for research into characterizing and understanding the 

climate system across multiple spatial scales. In recent years, ensembles of climate projections are increasingly used for 

impact and vulnerability assessments (e.g., Massoud et al., 2018, 2019, 2020ab; Wootten et al., 2020ab). These include 35 
large-scale assessments, such as the National Climate Assessment (Wuebbles et al. 2017), and local and regional 

assessments for individual areas of the United States. Large and local scale assessments can make use of the entire ensemble 

of climate projections (composed of global climate models [GCMs]), or make use of the ensemble mean, which provides 

representative information from multiple GCMs. For these assessments, using the ensemble mean provides a useful and 

convenient way to assess projected changes in a region. Given the coarse resolution of the GCMs (typically > 100km2), 40 
many of these assessments make use of downscaled climate projections to translate larger-scale changes to local scales.   

  

Alongside the use of climate modeling and downscaling for climate research and increased use for impact and vulnerability 

assessments, there has also been a transition in the last 20 years toward using weighted multi-model means. Model weights 

based upon skills of historical simulations have been shown to have greater accuracy than an arithmetic multi-model mean in 45 
many cases, provided that there is enough information to determine a weight for each model (Knutti et al. 2010; Weigel et al. 

2008; Pena and Van den Dool, 2008; Min and Hense, 2006; Robertson et al. 2006). In the last few years, weighting based 

solely on skill has given way to weighting based upon both skill and independence. This transition has resulted from the 

recognition that some models can be more skillful for certain variables and regions, but also as common bases of model 

structure, parameterizations and associated programming code can result in a lack of independence between GCMs 50 
(Massoud et al. 2019, 2020a; Sanderson et al. 2015, 2017; Knutti, 2010; Knutti et al. 2017). In acknowledgment of studies 

indicating that the global climate models are not fully independent, the Fourth National Climate Assessment (NCA4) was the 

first major climate assessment in the United States to use skill and independence-based model weighting on the ensemble of 

climate models (Sanderson and Wehner, 2017). 

  55 
The authors of this paper have extensively investigated the effect of model weighting on the outcome of climate change 

projections from multi-model ensembles (Massoud et al. 2019, 2020a; Wootten et al. 2020a). For example, in Massoud et al. 

(2019), the authors utilized information from various model averaging approaches to evaluate 21 global climate models from 

the Coupled Model Intercomparison Project Phase 5 (CMIP5; Taylor et al., 2012), and they based their weighting strategies 

on model independence as well as performance skill of atmospheric rivers globally. In Massoud et al. (2020a), the authors 60 
used Bayesian model averaging (BMA) as a framework to constrain the spread of uncertainty in climate projections of 

precipitation over the contiguous United States (CONUS). In Wootten et al. (2020a), the authors applied various ensemble-

weighting schemes to constrain precipitation projections in the south-central United States and applied these strategies to 

both the 26-model ensemble from the CMIP5 archive and the downscaled version of the models. The latter study is distinct 
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from prior research, because it compared the interactions of ensemble-weighting schemes with GCMs and statistical 65 
downscaling to produce multi-model ensemble means. 

  

Some studies have applied model weighting to a certain variable (e.g. precipitation) and went on to investigate climate 

change impacts for other variables (e.g. temperature or streamflow) (c.f. Knutti et al., 2017; Massoud et al., 2018). The 

National Climate Assessment had previously considered weighting based only on commonly used climate variables (e.g. 70 
precipitation and temperature, Wuebbles et al., 2017), but discussions to use additional variables are currently ongoing. 

Other studies have applied model weighting to a specific domain (e.g. globally) and went on to apply the developed weights 

on a different domain (e.g. North America or Europe) (Massoud et al., 2019). However, these studies are rare, as are studies 

providing comparisons of various weighting schemes (e.g. Shin et al. 2020; Brunner et al., 2020a; Kolosu et al. 2021), and 

no previous study offers a comprehensive cross-comparison of the effects on the ensemble means from the choices of the 75 
domain, variable, weighting scheme, and ensemble. The current study will answer the two following questions regarding 

model weighting: Should model weights be developed separately when investigating different climate variables? Should 

model weights be estimated separately when investigating different domains? 

  
Taking these points into consideration, we assess the choice of model weighting strategy by developing and investigating a 80 
multi-dimensional sensitivity matrix for applying model averaging for the south-central region of the US - as defined by the 

NCA. To this end, we look at mean precipitation and high temperatures as our climate variables of interest. Furthermore, we 

split the entire south-central region into three different domains; Louisiana, New Mexico, and the entire domain. Overall, we 

created and apply various sets of model weights based on several choices: a) the choice of the ensemble (CMIP5 or 

downscaled), b) the choice of model weighting scheme, c) the choice of climate variable of interest (precipitation vs 85 
temperature), and d) the choice of the domain used to derive weighting (entire south-central region vs smaller sub-domain). 

Therefore, one example of a strategy that we apply to estimate a set of weights uses the BMA weighting method on the 

CMIP5 ensemble projections of the precipitation variable for the Louisiana domain. To our knowledge, there has not been a 

model weighting study that included as many dimensions in the experimental matrix as this study, again these are model 

ensemble, domain, variable, and importantly, the weighting scheme itself. 90 
  

Our analysis results in a wide array of possible future outcomes, which comes with high uncertainties on what to expect in 

the future in this domain. The main question we are after is whether or not some variables or domains have projected climate 

change signals that have high certainty. Alternatively, we would like to find out whether or not there are climate variables in 

any of the regions that have highly uncertain climate change projections. We aim to address these uncertainties by applying 95 
the multi-dimensional experimental matrix of model weighting strategies and hope to inform the scientific community of 

these sensitivities for the benefit of future stakeholders, including climate modelers and boundary organizations providing 

climate services. 
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2 Methods and Data 100 

2.1 Study Domain and Variables 

The south-central United States (from about 26°N 108.5°W to 40°N 91°W) has a varied topography with a sharp gradient in 

mean annual precipitation from the east (humid) to the west (arid), and a generally warm climate. The Mississippi River 

Valley and the Ozark Mountains in the eastern portion of the region (elevations of 200–800 m), the Rocky Mountains in the 

west (1500–4400 m), and the Gulf of Mexico in the southeast (near sea level). Precipitation in the southeast portion of the 105 
domain can be eight times higher than drier western locations and average high temperatures can reach 40°C (Figure 1). 

2.2 Climate Projection Datasets 

We use one member each from 26 GCMs in the CMIP5 archive to form the GCM multi-model ensemble. To form the 

downscaled ensemble, the same 26 GCMs are used from the downscaled projections created with the Localized Constructed 

Analogs (LOCA) method (Pierce et al. 2014). The LOCA-downscaled projections have been used in other studies, including 110 
the NCA4 (USGCRP, 2017) and Wootten et al. (2020a). Table S1 lists the GCMs used for both the GCM ensemble 

(hereafter CMIP5 ensemble) and downscaled ensemble (hereafter LOCA ensemble). See Wootten et al. (2020a) for more 

details on the climate projection datasets. 

 

To facilitate analysis, the data for each ensemble member are interpolated from their native resolution to a common 10 km 115 
grid using a bi-linear interpolation similar to that described in Wootten et al. (2020b). We examine projected daily 

precipitation (pr) and daily high temperature (tmax) changes from 1981–2005 to 2070–2099 under the RCP 8.5 scenario, 

which ramps the anthropogenic radiative forcing to 8.5 W/m2 by 2100. We chose RCP 8.5 to maximize the change signals 

and allow us to analyze greater differences between weight schemes and downscaling techniques. The historical period 

(1981–2005) is used for both the historical simulations and observations to facilitate comparisons with other studies 120 
(Wootten et al. 2020b) and because the historical period of the CMIP5 archive ends in 2005 (Taylor et al. 2012).  

2.3 Observation Data 

Many publicly available downscaled projections (including LOCA) are created using gridded observation-based data for 

training. Gridded observations are based largely on station data that are adjusted and interpolated to a grid in a manner that 

attempts to account for biases, temporal/spatial incoherence, and missing station data (Behnke et al. 2016; Wootten et al. 125 
2020b; Karl et al. 1986; Abatzoglou, 2013). In this study, we use Livneh version 1.2  (hereafter Livneh [Livneh et al. 2013]), 

interpolated to the same 10 km grid using bilinear interpolation, as the gridded observation data used for comparison to the 

ensembles. Livneh is used in part to facilitate any comparisons between this study and the results of Wootten et al. 
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(2020a).  The LOCA ensemble used the Livneh data as the training data, so it is expected that LOCA will be more accurate 

than the CMIP ensemble when compared to the Livneh dataset. While we recognize that different gridded observations and 130 
downscaling techniques influence projections of precipitation variables (e.g. number of days with rain, heavy rain events), 

the effect is minimal on the mean annual precipitation (Wootten et al. 2020b). Therefore, we find it is appropriate to make 

use of only one statistical downscaling method and one gridded observation dataset. 

2.4 Weighting Schemes 

In this analysis, we make use of model weighting schemes detailed in Wootten et al. (2020a) and similar to the weighting 135 
schemes applied in Massoud et al. (2020a). The resulting weighting schemes are applied multiple times to complete an 

experimental matrix allowing for in-depth comparisons of the sensitivity of the ensemble mean to various approaches to 

deriving and applying the multi-model weights. These weighting methods include the unweighted model mean, the historical 

skill weighting (hereafter Skill), the historical skill and historical independence weighting (SI-h), the historical skill and 

future independence weighting (SI-c), and the Bayesian Model Averaging (BMA) method. In essence, the unweighted 140 
strategy takes the simple mean of the entire ensemble. The Skill strategy utilizes each model’s skill in representing the 

historical simulations. The SI-h strategy also uses historical skill but considers the independence of each model in the 

historical simulations. The SI-c strategy uses historical skill and independence of each model found in the climate change 

signal (i.e. in the future projections) Finally, the BMA strategy employs a probabilistic search algorithm to find an optimal 

set of model weights that produce a model average that has high skill when compared to the observation and its uncertainty. 145 
Refer to Wootten et al. (2020a) and Massoud et al. (2019, 2020a) for more information on how the model weighting schemes 

are applied. 

2.5 Experimental Matrix 

Each weighting scheme (Skill, SI-h, SI-c, and BMA) is applied to both ensembles (CMIP5 and LOCA) to fill out an 

experimental matrix of weights. The weighting schemes are applied to find the best historic fit of two climate variables 150 
(tmax and pr). The weighting schemes are also applied to find the best historic fit for three different domains; the full domain 

(Southern Great Plains), Louisiana only, and New Mexico only. As a result, for each weighting scheme (skill, SI-h, SI-c, and 

BMA) and ensemble (CMIP5 and LOCA), there are six sets of weights produced (i.e. 3 regions and 2 variables). One 

example of this would be a BMA weighting strategy used on the CMIP5 ensemble trained on tmax for the entire domain. 

Another example would be a skill-based weighting strategy used on the LOCA ensemble trained on precipitation in 155 
Louisiana. There are a total of 48 such model weighting strategies (ensemble choice x weighting methods choice x variable 

choice x domain choice = 2 x 2 x 3 x 4 = 48). In addition to the set of 48 weighting strategies, an unweighted ensemble mean 

is also used. The unweighted strategy effectively has equal weights for all models regardless of variable, domain, or 

ensemble. As such, including an unweighted ensemble mean represents only one additional modeling strategy, which brings 

the total to 49 model averaging strategies in our experimental matrix. 160 
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The various model weights from each scheme are calculated, and the derived sets of weights are then applied to create 

ensemble means for the three domains and two variables. In other words, a certain set of weights can be used to determine 

projected changes in either tmax or pr and can be used for any of the domains, i.e. full domain, Louisiana, or New Mexico. 

There are a total of 288 such maps that can be created to investigate future climate change. These are 48 model averaging 165 
choices described above, applied to 2 different variables in 3 different domains, or 48 x 2 x 3 = 288 combinations of maps. 

This collection of 288 is in addition to the results from unweighted means of temperature and precipitation. Including these 

unweighted means, there are 290 combinations of maps from this project. This explains the highly dimensional experimental 

matrix applied in this study, which provides the total uncertainty that is estimated with our future change projections. See 

Figure 2 for a schematic describing the various choices made to create each model weighting strategy and the choices made 170 
to how each of these model weights can be applied. 

3 Results 

This section will first consider the sensitivity of the model weighting schemes to the ensembles, variables, and domains used. 

This section will then focus on the bias and change signal from the resulting combinations of ensemble means.  

3.1 Ensemble weights – results from various model weighting strategies 175 

The resulting sets of model weights for the CMIP5 ensemble based on the weighting scheme, variable, and domain, are 

shown in Figure 3. The 24 sets of model weights for the LOCA ensemble based on the weighting scheme, variable, and 

domain, are shown in Figure 4. Alongside the best-estimated weight from the BMA weighting scheme, the box-whisker plots 

in the image show the spread of weights from the 100 iterations of BMA for each ensemble, variable, and domain to which 

BMA was applied. The grey dots in these figures depict the outliers from the BMA distributions of weights. 180 
 

One observation seen in these weighting combinations is that the weighting schemes themselves are all sensitive to the 

ensemble, variable, and domain for which they are derived. This is reflected further when one considers which models from 

each ensemble are given the strongest weights by each model weighting scheme (Table 1). From Table 1, no model appears 

in the top three for all model combinations. The model most consistently in the top three is the CanESM2, which is in the top 185 
three for 35.4% of the 48 weighting combinations. 

 
Although the weighting schemes are sensitive to ensemble, variable, and domain, the weights produced by Skill, SI-h, and 

SI-c are similar to each other, while the BMA weighting tends to be different. This is particularly true for precipitation and 

follows what was shown by Wootten et al. (2020a) and Massoud et al. (2020a). The BMA approach provides a distribution 190 
of weights for each model and this distribution of weights overlaps the weights of the Skill, SI-h, and SI-c approaches. This 
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distribution of weights covers a broader region of the model weight space, but the best BMA combination (marked as orange 

squares in Figures 3 and 4) is significantly different from the other schemes. 

 

Aside from the difference within each combination of ensemble, variable, and domain, there are also notable differences 195 
between these combinations. The pattern of the weights, shown in Figures 3 and 4, changes significantly between 

combinations, particularly among the BMA weights and in the CMIP ensemble. Among the BMA and CMIP5 ensemble 

combinations (Figure 3), there are no common patterns to the model weights based on domain or variable. However, while 

the patterns between Skill, SI-h, and SI-c are similar to each other, their magnitude is consistently smaller than BMA. This 

indicates that when applying different weighting schemes, different models are given higher weights when applying the 200 
CMIP5 ensemble for different domains or variables. 

 

When using the LOCA ensemble (Figure 4), there is more consistency in which models are given higher weights, 

particularly when weights are derived based on high temperature (tmax). For the LOCA ensemble, the distribution of the 

BMA weights has a similar pattern across all three domains for the tmax derived weights, and the best-weighted models are 205 
also somewhat consistent between domains. Similar to the CMIP5 ensemble in Figure 3, the BMA weights tend to be larger 

for the highest weighted models in the LOCA ensemble compared to those derived with the Skill, SI-h, and SI-c 

schemes.  For weights derived with tmax, the Skill, SI-h, and SI-c have very similar patterns for both the full and New 

Mexico domains. The Skill and SI-h weighting schemes, which focus entirely on the historical period, created nearly 

identical weights for the 26 models when weights are derived based on tmax in the full and New Mexico domains. While the 210 
weights from Skill and SI-h are not identical when derived using tmax in the Louisiana domain, the weights for the LOCA 

ensemble generally range from 0.025 to 0.050. The SI-c weights derived using tmax in the LOCA ensemble have a similar 

pattern between the full and New Mexico domains, but a very different pattern in the Louisiana domain (Figure 4). In 

addition, the SI-c also tends to have a different pattern from the Skill and SI-h weights when tmax and LOCA are used for 

derivation. There is much more sensitivity to domains when using precipitation and the LOCA ensemble to derive weights, 215 
compared to that of tmax. Regardless of the weighting scheme, there is no common pattern in the weights between domains 

when the LOCA ensemble and precipitation are used to derive weights. Again, the BMA scheme applies much larger 

weights to the top models for precipitation-based LOCA weighting compared to the Skill, SI-h, and SI-c weighting schemes.  

 

The LOCA statistical downscaling method, like most statistical downscaling methods, incorporates a bias correction 220 
approach, which inherently improves the historical skill. In addition, the Skill, SI-h, and SI-c methods focus primarily on the 

first moment of the ensemble distribution when deriving weights, which limits the ability to penalize for co-dependence 

between models in an ensemble. Finally, the BMA considers multiple moments of the ensemble distribution using multiple 

samples via Markov Chain Monte Carlo (MCMC), rewarding skillful models and penalizing co-dependency. Of the 

weighting combinations used here, the BMA tends to be the most sensitive to the ensemble, variable, and domain used to 225 
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determine weights. Given that the BMA focuses on multiple moments of the distribution and is most sensitive to the 

different choices considered here (ensemble, variable, and domain) it is plausible that the BMA approach responds to and 

captures the changes in skill and co-dependence among the ensemble members resulting from these various choices. 

3.2 Size of the experimental matrix of model weights and how to apply them 

One can apply the 48 weighting combinations described above in a similar manner to the way the weighting combinations 230 
themselves are created. For example, one could apply the weights derived from the CMIP5 ensemble precipitation for the 

full domain using BMA to create a weighted ensemble mean of CMIP5 precipitation for Louisiana. As shown in Figure 2, 

each weighting combination is applied to the variables (high temperature and precipitation) and domains (full, Louisiana, 

and New Mexico) to produce a set of ensemble means. Altogether, the maximum number of weighted ensemble means 

produced with these 48 weighting combinations is 48x2x3=288. However, this maximum number of ensemble means 235 
resulting from the experiment contains several duplicates. For example, when using the same set of weights, the resulting 

ensemble mean in a subdomain will be the same as the resulting ensemble mean from the same portion of the full domain. 

As such, the actual number of ensemble means in this experiment is smaller than 288. 

3.3 Historical Bias and Future Projected Changes in unweighted model ensembles 

The figures shown in later sections focus on the ensemble means from the 48 weighting combinations applied to the full 240 
domain. The discussion surrounding bias and projected changes represented by the ensemble means in the following 

subsection will be compared to the unweighted ensemble means of high temperature and precipitation from the CMIP5 and 

LOCA ensembles. For this reason, we first show the historical ranges and the ranges of the future projected changes using 

the unweighted model ensemble (Figure 5) before reporting on the results using the weighted ensembles. The unweighted 

CMIP5 ensemble as a whole tends to underestimate high temperatures in the historical period, overestimate precipitation in 245 
New Mexico, and underestimate precipitation in Louisiana (top left panel of Figure 5). The LOCA ensemble is much closer 

to the Livneh observations, which is expected given the bias correction applied in statistical downscaling. Yet, for the 

unweighted LOCA ensemble, there is a tendency to underestimate precipitation in the whole domain and the New Mexico 

subdomain and to overestimate temperature in all of the domains (bottom left panel of Figure 5). For the future projected 

changes in the unweighted CMIP and LOCA ensembles, the projected high temperature changes are consistent between 250 
ensembles (bottom right panel of Figure 5), and the projected changes in precipitation are less variable in the LOCA 

ensemble for the New Mexico domain and more variable for the Louisiana domain (top right panel of Figure 5). Given this 

baseline information, the following subsections discuss and compare the unweighted and weighted ensemble means for each 

ensemble (CMIP5 and LOCA). 
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3.4 Historical Bias and Future Projected Changes using the weighted ensembles 255 

The 48 combinations of model weights are then applied across three domains and two variables to produce 288 ensemble 

means. The mean projected changes can be sensitive to the weighting scheme, domain, and variable used. The future 

projected changes from the different ensemble means are summarized in Figure 6, where the boxplots represent the range of 

the ensemble mean change from the 100 BMA posterior weights. When the weighting is derived using tmax, the resulting 

CMIP5 mean projected change shows predominantly a decrease in precipitation for all domains (top-left group of panels in 260 
Figure 6, top row of figures). For the tmax derived weighting with the LOCA ensemble (top right group of panels in Figure 

6, top row of figures), the mean precipitation projections are more variable concerning the domain the weighting is applied.  

 

Using weights derived with precipitation and the CMIP5 ensemble, the mean projected precipitation increases/decreases 

when Louisiana/New Mexico is used to derive weights across all three applied domains (top-left group of panels in Figure 6, 265 
bottom row of figures). Using weights with precipitation in the LOCA ensemble, the mean projected precipitation generally 

decreases for most weighting schemes (top right group of panels in Figure 6, bottom row of figures), except for the resulting 

means for Louisiana with the BMA weighting scheme. In contrast to precipitation, the ensemble mean changes for tmax are 

fairly consistent for both CMIP and LOCA ensembles (bottom groups of panels in Figure 6, all rows of figures), with all 

model weighting strategies indicating a consistent increase in temperature for all domains.  270 
 

The following section and corresponding figures compare the results from the various weighting schemes applied in this 

study. Figure 7 looks at historical biases and Figure 8 shows the projected future change signals in precipitation for the 

CMIP5 ensemble of models. Figures 9 and 10 look at historical bias and projected future change signals in high temperature 

for CMIP5. Figure 11 looks at the projected future change signal in precipitation for the LOCA ensemble, and Figure 12 275 
looks at the projected future change signal in high temperature for the LOCA ensemble. For an in-depth analysis of how the 

model weighting strategies impact the resulting historical bias and climate change signals shown in Figures 7-12, readers are 

referred to the supplementary section, with a discussion on the main findings reported in the next section. For additional 

results that complete the analysis, readers are referred to the supplementary section (Figures S1-S6), which includes bias 

maps from the LOCA ensemble (S1-S2) as well as error distributions from the historical simulations of both ensembles (S3-280 
S6). 

4 Discussion 

Among climate scientists and the climate modeling community, there is a debate regarding the weighting of multi-model 

ensembles and, if one does apply weighting, how to do so. This is the first study, to the authors’ knowledge, to 

comprehensively assess the sensitivities of the model weights and resulting ensemble means to the combinations of 285 
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variables, domains, ensemble types (raw or downscaled), and weighting schemes used. Therefore, this study quantifies 

multiple weighting sensitivities to inform the larger discussion on multi-model ensemble weighting.  

4.1 Sensitivities of the Results to the Experimental Design 

The results from individual weighting schemes are sensitive to the choice of domain and variable of interest, regardless of 

whether the ensemble is downscaled or not. However, one can also note that the BMA weighting scheme tends to be more 290 
sensitive than the others. As noted by Wootten et al. (2020a) and Massoud et al. (2019, 2020a), the Skill, SI-h, and SI-c 

weighting schemes focus on the first moment of the distribution of a variable, while the BMA approach focuses on multiple 

moments of the distribution of weights. The BMA weighting can therefore produce weights that are significantly different 

from the other schemes. In addition, the BMA will also be more sensitive to the differences between domains and variables 

that are provided to derive model weighting. This is particularly the case with regards to the CMIP5 ensemble results for 295 
both variables but also is evident in the LOCA ensemble results for precipitation. The ensemble weights are most sensitive to 

the variable and domain using the CMIP5 ensemble and the weights created with the LOCA ensemble are less sensitive. A 

statistical downscaling procedure reduces the bias of the ensemble members compared to the raw CMIP5 ensemble, which 

likely results in there being less sensitivity when the LOCA ensemble is used. This is particularly likely for high 

temperatures, which is traditionally much less challenging for both global models and downscaling techniques to capture. 300 
 

We find that, for precipitation, the ensemble mean projected change from a multi-model ensemble is sensitive to the various 

choices associated with the derivation of model weighting. In contrast, for tmax, the ensemble mean projected change is less 

sensitive. The larger domain of the south-central region contains multiple climatic regions. The western portion of the 

domain includes the arid and mountainous New Mexico and Southern Colorado. The eastern portion of the domain is the 305 
much wetter and less mountainous area of Louisiana, Arkansas, and southern Missouri. The complexity of the region 

presents a challenge to GCM representation of precipitation and temperature. Deriving ensemble weights based on Louisiana 

precipitation favors models which are wetter while deriving ensemble weights based on New Mexico precipitation favors 

those models which are drier. This effect translates into the projected changes for precipitation in the CMIP5 ensemble that 

can reverse the change signal in the domain. The sensitivity for precipitation is evident when precipitation is the focus for 310 
deriving model weights, but also present to a lesser degree when high temperature is the focus for deriving model weights. 

The high temperature changes are also sensitive to the domain when precipitation weighting is used because precipitation-

based weighting favors wetter or drier models. In contrast, the high temperature change from the CMIP5 ensemble is much 

less sensitive when calculated with weights derived from high temperatures. The sensitivity present using the CMIP5 

ensemble is less apparent for the projected changes with the LOCA ensemble. In particular, LOCA ensemble means derived 315 
using the BMA weighting are more sensitive to the variable and domain used to derive weights. The LOCA downscaling, 

like most statistical downscaling methods, corrects the bias of the CMIP5 ensemble, pushing all models to have similar 

historical skill. It follows that the BMA weighting is more sensitive to the different choices considered here (ensemble, 
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variable, and domain) and that the BMA weighting responds to and captures changes in skill and co-dependence resulting 

from the different options of ensemble, variable, and domain. 320 

4.2 Broader Questions 

Weighted multi-model means have primarily been focused on GCMs and continental scales. However, the use of climate 

projections has extended to regional, state, local, and tribal uses for climate impact assessments and adaptation planning. In 

these regional to local efforts, the raw projection data has been used but also provided to impact models (such as hydrology 

or crop models). Currently, impact assessments outside the traditional venues of climate modeling tend not to use weighted 325 
multi-model means but tend to use unweighted means created using downscaled GCM ensembles. From this study, several 

questions arise. First, should impact assessments make use of weighted multi-model means? If yes, then a second question is, 

should multiple weighting schemes and ensemble means be used? Third, for situations where projections are provided to 

impact models, does this type of study need to be repeated using impact model results? These three questions are also related 

to the questions mentioned earlier. Should model weights be developed separately when investigating different climate 330 
variables? Should model weights be estimated separately when investigating different domains? All such questions could be 

considered in terms of climate modeling or broader impact assessments and applications. 

4.3 To weigh or not to weigh? 

At the time of writing, discussion surrounding the use of weighted multi-model ensembles has been limited to climate model 

developers and the production of national or international climate assessments. The authors know of no impact assessments 335 
or adaptation planning exercises where a weighted multi-model ensemble mean is discussed (although the NCA reports 

address some of these topics), let alone used, by the authors or planners involved or considered by the boundary 

organizations that serve them. Among climate model developers, Knutti et al. (2017) argue that model weighting is a 

necessity in part to account for situations where the model spread in the present-day climatology is massive resulting in some 

models having biases so large that using an unweighted mean is difficult to justify. In other situations, model 340 
interdependence becomes increasingly relevant with the increased use of common code bases across institutions causing 

unweighted means to be overconfident (Brunner et al., 2020b). This concern was also shared by Wootten et al. (2020a) with 

respect to the common modeling code base applied in the statistical downscaling process. Others have argued that using 

model weighting tunes the ensemble mean to those models favored during the historical period and allows no flexibility for 

the change in climate that may be better represented by models that perform poorly in the historical period.  345 
 

The results from this study demonstrate that the weights and resulting ensemble means are sensitive to the ensemble (CMIP 

or LOCA), variable, and domain used. However, the concerns of Knutti et al. (2017) and Wootten et al. (2020a) still stand. 

An unweighted mean will continue to over-favor models with large biases and co-dependencies regardless of the domain or 

variable of interest for either climate models or impact assessments. For this reason, we recommend the use of weighted 350 
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ensemble means not only for national and international assessments but also for regional impacts assessments and planning. 

Additionally, given the sensitivities presented in this study, we recommend not only that model weighting is applied, but that 

multiple strategies for model weighting are employed when feasible, to assure that uncertainties from various sources 

(e.g., weighting strategy used, domain or variable of interest applied, etc.) are considered. 

4.4 Consideration of weighting scheme, variables of interest, and domain choice 355 

The questions regarding the use of multiple weighting schemes and deriving such schemes with a specific focus on domains 

or variables of interest are interrelated given the sensitivities of the various weighting schemes to variable and domain. The 

use of multiple weighting schemes would allow for the sensitivities associated with model weighting to be captured and 

considered. However, it is important to note that the added value of using multiple weighting schemes may well depend on 

the domain and variables of interest. Mean projections of temperature are much less sensitive to the weighting scheme used, 360 
while mean projections of precipitation are more sensitive, particularly if the domain is very wet or very arid.  

 

Weighting for a specific variable is a more difficult question. In an impact assessment, one might justifiably argue that one 

should weigh the ensemble on the specific variable of interest for that assessment. Likewise, for national-level assessments 

and climate modeling, weighting on specific variables could be used to address the large biases and co-dependencies with 365 
respect to that variable among the models and produce ensemble means that reflect the appropriate confidence with regards 

to that variable. However, temperature, precipitation, and multiple other variables have strong physical relationships and thus 

are not fully independent themselves. As such, creating separate weights for variables independently may break the physical 

relationships in resulting ensemble means. Nevertheless, the weighting schemes used in this study have the capacity for 

multivariate ensemble weighting. Future work by the authors will explore multivariate ensemble weighting, in part to assess 370 
if multivariate weighting results in robust weighting for the variables used while retaining the physical relationships between 

the variables of interest. For national assessments, we recommend the use of multiple weighting schemes with multiple 

variables to assess the sensitivity and ultimately reduce the uncertainty for projected mean changes. For individual impact 

assessments, the focus on individual variables is likely context-dependent as individual planning decisions and impact 

assessments are strongly dependent on the region of interest and local climatic changes. A local/regional assessment often 375 
focuses on variables uncommon to climate model evaluations that are (or can be) derived from common variables in climate 

model evaluations. As such, a stakeholder-specific variable (such as growing season length) has a strong relationship with a 

common climate variable (such as temperature). With this in mind, weighting used in impact assessments should likely be 

derived using multiple variables incorporating both common and stakeholder-specific variables to produce relevant analysis 

for impact assessments and planning.  380 
 

Climate model evaluations and national assessments typically focus on the continental United States or North America. 

However, the individual National Climate Assessment regions are climatically very different from each other. The individual 
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GCMs in the CMIP ensemble likely do not have the same performance across all regions and an individual downscaling 

technique can be evaluated in one of these regions but applied to the entire continental United States or North America. In 385 
addition, the regions of Alaska, the U.S. Pacific Islands, and the U.S. Caribbean Islands have vastly different climates to the 

continental United States. The model weighting for each of these regions will likely be vastly different than the weighting for 

the continental United States as a whole. Given the different climates, it is recommended that weighting is derived for the 

NCA regions in addition to what is derived for the continental United States. This will allow for larger-scale assessments to 

account for the ability of the ensemble to reflect the unique climate of these regions while considering the ability of the 390 
ensemble to reflect the larger scale patterns which influence the climate in the different subregions.  

4.5 Caveats, Challenges, and Future Work 

An impact assessment or adaptation planning effort can span a range of spatial scales from municipalities to states or 

regions. For impact assessments involving larger states or regions, we also recommend a domain-focused weighting, both to 

capture the needs of the planners or stakeholders involved and to capture the climate in the area of interest. However, for 395 
smaller states or local municipalities, we do not recommend deriving model weighting based on these small regions. At 

small scales, the natural variability of a climate model may result in a model having the local climate correct but the larger 

climatic patterns represented incorrectly. As such, for impact assessments involving smaller areas, we recommend that 

model weighting be derived using the larger region that the small domain is situated in to avoid the confounding factor of 

natural variability in model weighting. One caveat in this study is that the sub-domains of New Mexico and Louisiana are 400 
quite small compared to the resolution of the GCMs in CMIP5. This suggests that natural variability may have had some 

effect on the results. In future work, the authors will repeat this analysis using the larger regions of the United States used in 

the National Climate Assessment. 

 

The authors recognize that the above recommendations are similar between the community of climate model developers 405 
invested in evaluation and assessment generally and the users and stakeholders now using climate projections for local and 

regional impact assessments. The authors also recognize that implementing such recommendations is more feasible for the 

former community than the latter. The latter community, users and stakeholders invested in impact assessments and 

adaptation planning, faces the added challenge that some impact assessments or planning efforts require using climate model 

projections (or downscaled climate projections) as inputs to additional modeling efforts such as hydrology modeling or crop 410 
modeling. While most impact assessments have not incorporated model weighting directly, some are beginning to do so (e.g. 

Skahill et al., 2021). Knowing this and the sensitivities that this study demonstrates, it is recommended for future efforts to 

examine the weighting of impacts model outputs from climate model inputs. Would weighting based on climate model 

inputs produce the same result as weighting based on, for example, streamflow output using an ensemble of climate 

projections as inputs? Given the sensitivities for weighting schemes, variables, domains, and ensembles, we suspect that the 415 
weighting would not be the same and that the translation of error and co-dependencies from climate model projections to 
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impacts models (such as a hydrology model) may result in a higher degree of sensitivity with respect to the resulting 

ensemble mean of stakeholder specific variables (such as streamflow). While there is less capacity among the users of 

climate projections to address such questions, the boundary organizations in the United States and internationally are 

developing the capacity to provide or derive ensemble weights with emphasis on the need of stakeholders. Therefore, the 420 
questions of sensitivity of weighting schemes and ensemble means bear increasing relevance as the number of users of 

climate projection output continues to increase. 

5 Conclusions 

This study examines the sensitivity of the multi-model ensemble weighting process and resulting ensemble means to the 

choices of variable, domain, ensemble, and weighting scheme for the south-central region of the US. In general, we see that 425 
weighting for Louisiana makes the future wetter and less hot, weighting for New Mexico makes the future drier and hotter, 

and accounting for the whole domain provides a compromise between the two. In addition, we see that ensemble mean 

projections for precipitation are more sensitive to the various aspects tested in this study, while ensemble mean projections 

for high temperature are less sensitive. As such, some domains/variables have uncertain outcomes, regardless of the 

weighting method. But for other domains/variables, the uncertainty is dramatically reduced, which can be helpful for the 430 
assessment of climate models and climate adaptation planning. The sensitivity of precipitation and temperature projections is 

reduced when LOCA is used, which is likely the result of the bias correction associated with the LOCA downscaling 

method. In addition, the BMA weighting scheme is more sensitive than the other weighting schemes. BMA’s sensitivity is 

the result of the BMA approach focusing on multiple moments of the distribution to account for model biases and co-

dependencies. 435 
  

Although there is sensitivity associated with the model weighting, a multi-model ensemble of climate projections should 

incorporate model weighting. Model weighting still accounts for issues of bias and co-dependence that preclude a model 

democracy approach to crafting multi-model ensemble means. Incorporating multiple weighting schemes allows for 

assessing and capturing the sensitivity associated with model weighting to the benefit of both climate modeling efforts and 440 
climate adaptation efforts. Given the sensitivity associated with weighting for different variables and domains, one may also 

consider crafting weighting schemes with a focus on the domains or variables of interest to an application. In addition, since 

some impact assessments or adaptation planning efforts make use of climate projections as inputs to impacts models (such as 

hydrology or crop models) there is a need to consider similar research to this study with regards to the direct outputs of 

impacts models using climate projections.  445 
 

From the results of our analysis, we summarize our recommendations concerning weighting as follows: 
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• Weighted ensemble means should be used not only for national and international assessments but also for regional 

impacts assessments and planning. 

• Multiple strategies for model weighting are employed when feasible, to assure that uncertainties from various 450 
sources (e.g., weighting strategy used, domain or variable of interest applied, etc.) are considered. 

• That weighting is derived for individual sub-regions (such as the NCA regions) in addition to what is derived for the 

continental United States. 

• That domain-specific weighting be derived using both common (e.g. precipitation) and stakeholder-specific (e.g. 

streamflow) variables to produce relevant analysis for impact assessments and planning. 455 
 

There are a couple of caveats and suggested future research. First, this study makes use of domains that are fairly small 

compared to the natural variability present in a climate model. Second, this study focused on the south-central United States. 

Future efforts should consider this analysis using larger regions, such as the continental United States and the NCA sub-

regions. Future efforts should also consider examining multivariate weighting to account for the physical relationships 460 
between variables. Finally, in the case of impacts models using climate projections, the weighting of the raw ensemble is 

likely different from weighting that may be applied using the output from impacts models using the ensemble as input. Given 

the increasing use of climate model ensembles in impacts models, future efforts should consider a similar investigation to 

this study using an impacts model. Such future efforts will answer multiple questions regarding the appropriate model 

weighting schemes, but also provide potential guidance to boundary organizations building capacity to assist in regional and 465 
local climate adaptation planning and impact assessments. 

6 Code Availability 

R Code to calculate weights associated with the Skill, SI-h, and SI-c weighting and produce all analysis in this study are 

available from Dr. Wootten on request. Programming code for BMA calculations is available from Dr. Massoud on request. 

7 Data Availability 470 

CMIP5 GCM output are available through the Earth System Grid Federation Portal at Lawrence Livermore National 

Laboratory (https://esgf-node.llnl.gov/search/cmip5/). The LOCA downscaled climate projections for CMIP5 GCMs are 

available through numerous portals included the USGS Center for Integrated Data Analytics GeoData Portal 

(cida.usgs.gov/gdp). The Livneh gridded observations are available from the National Centers for Environmental 

Information (https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.nodc:0129374;view=html). 475 
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Figures 610 
 
 

 
Figure 1: Topographical map for the study domain: The elevation map of the south-central United States with major rivers 
overlaid on it. Brown/green shading denotes elevation (in units of m), while the rivers are outlined in blue. Topography, 615 
bathymetry, and shoreline data are obtained from the National Oceanic and Atmospheric Administration (NOAA) National 
Geophysical Data Center’s ETOPO1 Global Relief Model (Amante and Eakins, 2009). This is a 1 arc-minute model of the Earth’s 
surface developed from diverse global and regional digital datasets and then shifted to a common horizontal and vertical datum. 
River shapefiles are obtained from the Global Runoff Data Centre’s Major River Basins of the World (GRDC 2020). Center — 
Study domain overlaid with annual average precipitation (mm) from Livneh v. 1.2 (Livneh et al. 2013). Right— Study domain 620 
overlaid with annual high temperatures (°C) from Livneh v. 1.2  (Livneh et al. 2013). 
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Figure 2: Flowchart showing the process of analysis with weighting schemes. Each version of the model average is constructed 
based on several choices: a) the choice of the ensemble (CMIP vs LOCA), b) the choice of model weighting strategy (unweighted, 625 
Skill, SI-h, SI-c, or BMA), c) the choice of climate variable of interest (precipitation or temperature), and d) the choice of the 
domain used for the ensemble averaging (entire south-central region, Louisiana, or New Mexico). These various choices give up to 
48, plus the unweighted version, so 49 overall choices of model weighting strategies. Then, once the model average is constructed 
and trained, there is a choice to be made on which variable and which domain to apply this model average to. Therefore, this 
results in 48 x 2 x 3 = 288 possible future outcomes in our experimental matrix plus 2 unweighted outcomes, for a total of 290 630 
combinations. 
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Figure 3: Model Weights for each of the 4 weighting schemes using the CMIP5 ensemble. The left column is weights based on 
precipitation (pr) alone and the right column is weights based on high temperature (tmax) alone. The top row is weights based on 
the full domain, the middle row is weights based on Louisiana alone, the bottom row is weights based on New Mexico alone. The 635 
boxplots are the spread of weights from the 100 iterations of the BMA weighting scheme. The grey dots in these figures depict the 
outliers from the BMA distributions of weights. 
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Figure 4: Same a Figure 3, but for the LOCA ensemble. 
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Figure 5: The unweighted model values across each of the three domains. The left column is during the historical period (1981-
2005) and the raw ensemble is compared to the same values from the Livneh observations. The right column is the 2070-2099 
projected changes under RCP 8.5 from both ensembles. The top row is for precipitation, the bottom row is for high temperature. 
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 645 
Figure 6: Mean projected changes in temperature and precipitation using all 48 weighting schemes, applied to all three domains 
and both variables (tmax and pr). The top group focuses on pr, the bottom row focuses on tmax, the left group focuses on the 
CMIP5 ensemble, and the right group focuses on the LOCA ensemble. In an individual group, the top row is the results from 
weighting schemes derived with tmax, and the bottom row is the results from weighting schemes derived with pr. In addition, 
within an individual group, the left column is the results for weighting derived using the full domain, the middle column is the 650 
results for weighting derived using the New Mexico domain, and the right column is the results for weighting derived using the 
Louisiana domain. Within a given domain and variable, the results are shown from left to right for the domain the weights are 
applied to. The boxplots are the results from the 100 BMA posterior weights. 
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Figure 7: Bias of CMIP5 ensemble mean precipitation (1981-2005) from the unweighted ensemble (left) and each weighted 655 
ensemble mean (right). On the right side, the columns from left to right are for the Skill, SI-h, SI-c, and BMA weighting schemes 
respectively. On the right side, the top group of twelve plots are the results for weights derived using temperature (tmax) and the 
bottom group of twelve plots are the results for weights derived using precipitation (pr). Within a group of twelve on the right 
hand side, the top row is for weights deriving using the full domain, the middle row is for weights derived using the Louisiana 
domain, and the bottom row is for weights derived using the New Mexico domain. 660 
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Figure 8: CMIP5 ensemble mean projected precipitation change (2070-2099, RCP 8.5) from the unweighted ensemble (left) and 
each weighted ensemble mean (right). On the right side, the columns from left to right are for the Skill, SI-h, SI-c, and BMA 
weighting schemes respectively. On the right side, the top group of twelve plots are the results for weights derived using 
temperature (tmax) and the bottom group of twelve plots are the results for weights derived using precipitation (pr). Within a 665 
group of twelve on the right hand side, the top row is for weights deriving using the full domain, the middle row is for weights 
derived using the Louisiana domain, and the bottom row is for weights derived using the New Mexico domain. 
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Figure 9: Same as Figure 7, but for the bias of high temperature of the CMIP5 ensemble. 
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Figure 10: Same as Figure 8, but for the mean projected change of high temperature from the CMIP5 ensemble. 
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Figure 11: Same as Figure 8, but for the mean projected change of precipitation from the LOCA ensemble. 675 
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Figure 12: Same as Figure 10, but for the mean projected change of high temperature from the CMIP5 ensemble. 

 
 
 680 
 
 
 
 
 685 
 
 
 
 
 690 
 
 
 
 
 695 
 
 
 
 
 700 
 
 

https://doi.org/10.5194/esd-2022-15
Preprint. Discussion started: 22 April 2022
c© Author(s) 2022. CC BY 4.0 License.



31 
 

Table 1: Top three highest weighted models from each of the 48 weighting combinations. 

Domain Weighting 
is Based On 

Variable Weighting 
is Based On Ensemble Skill SI-h SI-c BMA 

Full 

tmax 

CMIP5 

ACCESS1-0 CanESM2 CSIRO-Mk3-6-0 CSIRO-Mk3-6-0 

CSIRO-Mk3-6-0 CSIRO-Mk3-6-0 ACCESS1-0 MPI-ESM-MR 

CMCC-CMS MIROC-ESM CMCC-CM CMCC-CM 

LOCA 

MRI-CGCM3 MRI-CGCM3 MRI-CGCM3 MRI-CGCM3 

MIROC-ESM MIROC-ESM GISS-E2-R CanESM2 

CESM1-BGC CESM1-BGC IPSL-CM5A-MR FGOALS-g2 

pr 

CMIP5 

EC-EARTH ACCESS1-3 CMCC-CM ACCESS1-3 

CMCC-CM EC-EARTH ACCESS1-0 EC-EARTH 

ACCESS1-0 GISS-E2-R EC-EARTH CMCC-CM 

LOCA 

CESM1-BGC CanESM2 IPSL-CM5A-MR MIROC-ESM 

CanESM2 MIROC-ESM ACCESS1-0 CanESM2 

MIROC-ESM CESM1-BGC CMCC-CM CESM1-BGC 

Louisiana 

tmax 

CMIP5 

ACCESS1-3 ACCESS1-3 ACCESS1-3 CMCC-CM 

CMCC-CMS MPI-ESM-MR ACCESS1-0 ACCESS1-3 

MPI-ESM-LR CMCC-CMS MPI-ESM-LR MIROC5 

LOCA 

MRI-CGCM3 MIROC-ESM MIROC-ESM-
CHEM MRI-CGCM3 

MIROC-ESM MRI-CGCM3 MRI-CGCM3 GISS-E2-H 

ACCESS1-3 ACCESS1-3 GFDL-CM3 GFDL-ESM2M 

pr 

CMIP5 

ACCESS1-3 ACCESS1-3 ACCESS1-3 GISS-E2-R 

GISS-E2-R GISS-E2-R GISS-E2-R ACCESS1-3 

EC-EARTH EC-EARTH EC-EARTH MIROC-ESM-
CHEM 

LOCA 

CCSM4 GISS-E2-R GISS-E2-R CCSM4 

GISS-E2-R CanESM2 IPSL-CM5A-MR GISS-E2-R 

GFDL-ESM2M CCSM4 FGOALS-g2 EC-EARTH 

New Mexico tmax CMIP5 CanESM2 CanESM2 CSIRO-Mk3-6-0 CanESM2 
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CSIRO-Mk3-6-0 CSIRO-Mk3-6-0 ACCESS1-0 CSIRO-Mk3-6-0 

ACCESS1-0 ACCESS1-0 CanESM2 IPSL-CM5A-LR 

LOCA 

MRI-CGCM3 MIROC-ESM MRI-CGCM3 MRI-CGCM3 

MIROC-ESM MRI-CGCM3 MIROC-ESM MIROC-ESM 

GISS-E2-H CanESM2 GFDL-CM3 FGOALS-g2 

pr 

CMIP5 

CanESM2 CanESM2 IPSL-CM5A-MR CanESM2 

IPSL-CM5A-MR CSIRO-Mk3-6-0 CanESM2 IPSL-CM5A-MR 

ACCESS1-3 IPSL-CM5A-MR ACCESS1-3 CSIRO-Mk3-6-0 

LOCA 

MPI-ESM-LR MPI-ESM-LR CanESM2 CanESM2 

CanESM2 CanESM2 MPI-ESM-LR MIROC-ESM 

MIROC-ESM MIROC-ESM CMCC-CM EC-EARTH 
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